Evaluation of Ionic and Solvent Components of the Liquid-Junction Potential Between Aqueous and Several Aquo-Organic Solutions

Author:

Kahanda C,Popovych O

Abstract

Values of Ej,ion, the ionic component of the liquid-junction potential Ej, were calculated for the HCl,H2O |HCl,S2 and KCl,H2O | KCl,S2 junctions, where S2 was EtOH-H2O, HCONMe2- H2O and Me2SO-H2O solvents, and for the AgNO3,H2O | AgNO3,MeCN-H2O junction, over the entire mixed-solvent ranges. Both the old approximate equation for Ej,ion and our improved equation, which accounts for the variation of the ionic transport numbers t and chemical potentials Go in the interphase region, were used. Significant differences between the two equations were observed for systems where the t and ΔtG° functions dnisplayed extrema against the mixed-solvent composition. The highest Ej,ion value was 395 mV, for the HCl,H2O | HCl,Me2SO junction. Values of Ej,s,the solvent component of Ej, were calculated by subtracting the corresponding Ej,ion values from the total Ej, which was evaluated in each case from the e.m.f , of a cell with the liquid junction of interest and the transfer activity coefficient of the electroactive ion, estimated by the tetraphenylborate assumption. The magnitude of Ej,s was significant for the junctions between H2O and most of the solvents, and was particularly large for those involving dipolar aprotic solvents and highly solvated ions. The maximum Ej,s value was -201 mV, observed for the junction HCl,H2O|HCl,100% Me2SO.

Publisher

CSIRO Publishing

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3