Diminishing toxicity of pyrene on photosynthetic performance of soybean using

Author:

Jain LakshmiORCID,Jajoo AnjanaORCID

Abstract

Polycyclic aromatic hydrocarbons are persistent organic pollutants causing serious environmental problems, being toxic to plants and difficult to remediate. Pyrene is one such extremely dangerous compound that is toxic for the environment. This study suggests the use of Bacillus subtilis (National Collection of Industrial Microorganisms [NCIM] 5594) to overcome inhibitory effects of pyrene on soybean photosynthesis. The toxicity of pyrene to soybean was evident from a significant decrease in seed germination parameters, photosynthetic performance and biomass during growth of soybean in pyrene contaminated soil. Efficiency of performance index, light absorption, trapping and electron transport were reduced in plants grown in pyrene contaminated soil while significant recovery in these parameters was observed in plants grown in pyrene + B. subtilis treated soil. Activity levels of dehydrogenase and lipase enzymes significantly recovered in pyrene + B. subtilis treated soil. After extraction of pyrene from soil and soybean plant, concentration of pyrene was lowered in pyrene + B. subtilis treated soil and plants. These findings suggest efficient degradation of pyrene by B. subtilis. About 70% degradation of pyrene was achieved in soil using B. subtilis; thus it is a useful strain for crop improvement in pyrene polluted soil.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3