4-Amino-1,2,4-triazole can be more effective than commercial nitrification inhibitors at high soil temperatures

Author:

Mahmood Tariq,Ali Rehmat,Lodhi Asma,Sajid Muhammad

Abstract

Commercial nitrification inhibitors (NIs), namely nitrapyrin, 3,4-dimethylpyrazol phosphate (DMPP) and dicyandiamide (DCD), are ineffective at high temperatures. Therefore, it is imperative to explore new compounds that can be commercialised as effective NIs for warm climatic conditions. The aim of the present study was to compare the potential of 4-amino-1,2,4-triazole (ATC) with the two commercial NIs DMPP and DCD to delay nitrification of (NH4)2SO4 in an alkaline calcareous soil incubated under aerobic conditions at warm temperatures (35 and 25°C). Inhibitors were incorporated in (NH4)2SO4 granules and nitrification inhibition was calculated on the basis of net NH4+-N disappearance and net NO3–-N accumulation. At 35°C, the inhibitory effect of DCD and DMPP persisted only for 1 week, whereas ATC was effective up to 4 weeks. At 25°C, the inhibitory effect of ATC, DMPP and DCD was comparable. In another set of experiments, different concentrations of ATC (0.25–6% of N) were tested at three different temperatures (35, 25 and 18°C). At 35°C, ATC applied at 2% of N caused 63% inhibition for 2 weeks, whereas at a rate of 4–6% of N the inhibitory effect of ATC persisted up to 4 weeks (63–84% inhibition). At 25°C, ATC application at a rate of 1% of N caused 64% inhibition for 2 weeks; increasing the application rate to 2–6% of N prolonged the inhibitory effect up to 4 weeks (55–94% inhibition). At 18°C, a much lower concentration of ATC (0.25–0.5% of N) was required to achieve ≥50% inhibition for 2–4 weeks, whereas increasing the application rate to 2% of N caused 93% inhibition for 4 weeks. The results of the present study suggest that although commercially available NIs are ineffective at high summer temperatures, ATC may have the potential to be commercialised as an effective NI for warm as well as moderate climatic conditions.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3