Shining a light into the world’s deepest caves: phylogenetic systematics of the troglobiotic scorpion genus Alacran Francke, 1982 (Typhlochactidae : Alacraninae)

Author:

Santibáñez-López Carlos E.,Francke Oscar F.,Prendini L.

Abstract

The scorpion genus Alacran Francke, 1982, endemic to eastern Mexico, was created to accommodate Alacran tartarus Francke, 1982. This remarkable troglobiotic species is adapted for life in some of the world’s deepest caves, 720–916 m below the surface in the Sistema Huautla of the state of Oaxaca (the deepest records at which a scorpion has been found). A second species, Alacran chamuco Francke, 2009, was later described from Te Cimutaá, also in Oaxaca. In the present contribution, we describe a third species, Alacran triquimera, sp. nov., recently discovered in a cave system in the state of Puebla, and test the monophyly and internal relationships of Alacran, based on a cladistic analysis of 10 terminal taxa (including seven species representing all four genera of Typhlochactidae) and 151 informative morphological characters, building on a previously published matrix. The single most parsimonious tree obtained, supports the monophyly of Alacran and the following relationships among its component species: (A. chamuco (A. tartarus + A. triquimera, sp. nov.)). The phylogenetic relationships among the three species of Alacran are consistent with the biogeographical history of the caves they inhabit. Based on the geological history of the Sierra Madre del Sur and the likely similar speleogenesis of the Tres Quimeras, Sistema Huautla and Te Cimutaá caves, we propose a vicariance hypothesis to account for the disjunct distribution of the three species of Alacran, whereby an initially more widespread, panmictic ancestral population speciated into three geographically isolated taxa following fragmentation of the southern Sierra Madre del Sur.

Publisher

CSIRO Publishing

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3