Ion-exchange technique (IET) for measuring Cu2+, Ni2+ and Zn2+ activities in soils contaminated with metal mixtures

Author:

Schwertfeger D. M.,Hendershot W. H.

Abstract

Environmental contextTerrestrial environments receiving trace metal contaminants are often impacted by more than one metal. This study demonstrates the adaptation of an ion-exchange technique to simultaneously obtain Cu2+, Ni2+ and Zn2+ activities in soil extracts. These measurements can be used to better understand and predict the behaviour and bioavailability of soil metals in metal–mixture contamination scenarios. AbstractReliable estimates of metal speciation are critical for predicting metal bioavailability and the toxicological effects of metal mixtures in the soil environment; however, simultaneous measurements of metal free ion activities in complex matrices pose a challenge. Although speciation models maybe useful, the uncertainty of metal binding to natural organic matter requires that such models be validated with empirical data. In this study, an ion-exchange resin technique (IET) was adapted for the analysis of Cu2+, Ni2+ and Zn2+ in soil extracts. The analysis was performed with three different soil types spiked with single and multiple metal additions to obtain a range of metal concentrations and combinations. Method detection limits of 0.006, 0.04 and 0.05µM for Cu2+, Ni2+ and Zn2+ were achieved. The values obtained by IET were comparable with those estimated by Visual MINTEQ, giving a root mean squared error of 0.21, 0.30 and 0.34 (n=30) for the Cu, Ni and Zn data. The Cu2+ activities obtained by IET were within an order of magnitude of those obtained by a Cu ion-selective electrode, being on average 6-fold greater, with better agreement occurring in samples having lower organic matter contents. The resulting soil metal speciation data revealed that the partitioning of soil Cu to the potentially bioavailable Cu2+ pool differed in the binary mixture with Ni compared with the single-metal Cu treatments. These data can be used to assess metal bioavailability and aid in the interpretation of ecotoxicological effects observed in soils where multiple metals are a concern.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3