NEURODEGENERATIVE DISEASES

Author:

Chan Anthony

Abstract

In the past few decades, a tremendous amount of effort has been invested in developing gene and cell therapies for inherited genetic diseases such as Huntington's disease (HD). However, progress in their clinical application has been very limited. One of the major barriers is the lack of appropriate animal models that allow precise prediction patterns in human patients. Most of the animal models used for gene and cell therapy study are primarily focused on safety and toxicity evaluation, while therapeutic efficacy cannot be fully addressed because they do not carry the same human diseases. Although mouse models of human diseases are available and have been widely used for the development of new therapies, mice are not good predictors for humans because of the fundamental differences (genome composition, body size, life span and metabolic mechanism) between humans and rodents. Although monkeys are one of the best models for studying pharmacokinetics and overall impact of treatment, they are primarily used for safety and toxicity evaluation. Even HD monkey models, created by chemical induction or focal gene transfer in the brain, develop similar cellular pathology, therapeutic efficacy and systemic evaluation cannot be determined, which is one of the major barriers in drug and therapeutic development. The development of transgenic HD monkeys has opened the door for a new paradigm of animal modeling for the advancement of novel gene and cell therapy. HD monkeys not only carry the genetic defect that leads to human HD, they also develop clinical features comparable to humans that no other animal model does. While testing in HD monkeys has yet to be achieved until a cohort of well characterized HD monkeys was established, iPS cell lines derived from HD monkeys with a board spectrum of HD pathology and clinical features are a unique in vitro model for studying HD pathogenesis and the development of novel therapeutic approaches. New knowledge and treatments generated from iPS cells can next be translated and applied in HD monkeys from whom the stem cells were derived, thus the goal of personalized medicine can also be evaluated. This work was funded by a grant from NCRR/NIH (R24RR018827).

Publisher

CSIRO Publishing

Subject

Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3