N-protein mobilisation associated with the leaf senescence process in oilseed rape is concomitant with the disappearance of trypsin inhibitor activity

Author:

Etienne Philippe,Desclos Marie,Le Gou Lucie,Gombert Julie,Bonnefoy Josette,Maurel Karine,Le Dily Frédérik,Ourry Alain,Avice Jean-Christophe

Abstract

Brassica napus L. (oilseed rape) is an important crop plant characterised by low nitrogen (N) use efficiency. This is mainly due to a weak N recycling from leaves that is related to incomplete protein degradation. Assuming that protease inhibitors are involved throughout protein mobilisation, the goal of this study was to determine their role in the control of N mobilisation associated with leaf senescence. Results showed that a 19-kDa polypeptide exhibiting trypsin inhibitor (TI) activity presented an increased gradient from the older to the younger leaves. According to the SAG12/Cab gene expression profile, which is an indicator of leaf senescence, mature leaves of nitrate-deprived plants presented an earlier initiation of senescence and a decrease in protein concentration when compared with nitrate-replete plants. This coincided with disappearance of both TI activity and a reduction in the transcript level of the BnD22 gene (encoding a protein sharing homology with Künitz protease inhibitor). In young leaves of N-deprived plants, initiation of senescence was delayed; soluble protein concentration was maintained while both TI activity and BnD22 transcripts were high. This indicates that in oilseed rape growing under nitrate deprivation, the more efficient N recycling from mature leaves contributes to the maintenance of growth in young leaves. The data suggest a significant role for protease inhibitors in the regulation of proteolytic processes associated with N mobilisation during leaf senescence.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3