Use of a quanta meter to measure attenuation and underwater reflectance of photosynthetically active radiation in some inland and coastal south-eastern Australian waters

Author:

Kirk JTO

Abstract

The attenuation of total photosynthetically active radiation (PAR) in natural waters and its characterization by means of a vertical attenuation coefficient are briefly discussed. The factors determining underwater reflectance (ratio of upward to downward irradiance at a given depth) are considered, and a simple mathematical treatment is presented which leads to the conclusion that within that part of the water body where the asymptotic radiance distribution exists, if reflection from the bottom is negligible then the reflectance is equal to the asymptotic backscattering coefficient (defined in the text) divided by 2K, where K is the (natural logarithm) vertical attenuation coefficient. Data collected using a commercially available quantum irradiance meter over a 2-year period for various inland and coastal waters in south-eastern Australia are presented together with measure- ments of levels of yellow substance and phytoplankton. In the turbid inland waters attenuation of PAR closely follows an exponential law. In the much clearer coastal waters, by contrast, attenuation of PAR is approximately biphasic, the vertical attenuation coefficient in the upper few metres being noticeably higher than that at greater depths. Within any one water body the vertical attenuation coefficient was observed to vary up to four-fold during the 2-year period: nevertheless there were indications that the average attenuation of PAR tended to differ characteristically from one water body to another. In one of the inland waters, measurements at different times of day showed that the vertical attenuation coefficient was not strongly dependent on solar altitude. Underwater reflectance values in the inland waters were surprisingly high (0.04-0.21) compared to values in the literature: this is probably a consequence of the high turbidity of these waters. Calculated values of the asymptotic backscattering coefficient for the inland lakes are presented. It is suggested that measurements of yellow substance and phytoplankton, together with some estimate of light scattering, in parallel with measurements of attenuation of PAR would facilitate an understanding of the factors responsible for that attenuation.

Publisher

CSIRO Publishing

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3