Bacterial succession in an abandoned circum-neutral opencast coal mine in India

Author:

Banerjee SohiniORCID,Misra Arijit,Sar Abhijit,Pal Srikanta,Chaudhury Shibani,Dam BombaORCID

Abstract

Context Abandoned mines provide an ideal opportunity to study the succession of microbial communities, which is crucial for the development and stability of the soil. Aims We examined the diversity and temporal succession of the microbial community in an abandoned coal mine. Methods We investigated soil geochemical parameters and microbial succession using high-throughput 16S rRNA gene amplicon sequences over a 4-year period in a derelict opencast circum-neutral coal mine in Tasra colliery, Jharkhand, India. Results Soil pH (4.46–6.13), organic carbon (0.86–4.53%), available nitrogen (0.001–0.003%) and total cultivable heterotrophic microbial load increased, and concentrations of chloride (24 865–15 067 ppm), sulfate (26 417–417 ppm) and heavy metals reduced over the period of 4 years. The 16S rRNA gene sequences identified Proteobacteria as the dominant phylum across samples except for the fourth year, where Actinobacteria was predominant. Chlorobi, WPS-2 and Spirochaetes were exclusively identified in the first year. Twelve phyla present in the first year were completely absent by the end. In the fourth year, an abundance of nitrogen-fixing members such as Burkholderiales, Rhizobiales, Roseiflexales and Actinomycetales was noted and semi-quantitative PCR suggested that nitrogenases were predominately vanadium dependent (relative to molybdenum). Gradual shifts from purportedly chemolithotrophic to heterotrophic metabolic strategies were also observed. Conclusion This work establishes that soil improvement in abandoned coal mines involves the dynamic interplay of physicochemical parameters and shifts in microbial communities and dominant metabolic guilds. This knowledge can be used to plan and monitor remediation measures in such sites.

Funder

West Bengal Department of Science and Technology

Council of Scientific and Industrial Research, India

Department of Biotechnology, Ministry of Science and Technology, India

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3