Rapid elemental prediction of heterogeneous tropical soils from pXRF data: a comparison of models via linear regressions and machine learning algorithms

Author:

Faria Álvaro José Gomes deORCID,Silva Sérgio Henrique GodinhoORCID,Lima Luiza Carvalho Alvarenga,Andrade Renata,Botelho Lívia,Melo Leônidas Carrijo AzevedoORCID,Guilherme Luiz Roberto Guimarães,Curi NiltonORCID

Abstract

Context USEPA 3051a is a standard analytical methodology for the extraction of inorganic substances in soils. However, these analyses are expensive, time-consuming and produce chemical residues. Conversely, proximal sensors such as portable X-ray fluorescence (pXRF) spectrometry reduce analysis time, costs and consequently offer a valuable alternative to laboratory analyses. Aim We aimed to investigate the feasibility to predict the results of the USEPA 3051a method for 28 chemical elements from pXRF data. Methods Samples (n = 179) representing a large area from Brazil were analysed for elemental composition using the USEPA 3051a method and pXRF scanning (Al, Ca, Cr, Cu, Fe, K, Mn, Ni, P, Pb, Sr, Ti, V, Zn and Zr). Linear regressions (simple linear regression – SLR and stepwise multiple linear regressions – SMLR) and machine learning algorithms (support vector machine – SVM and random forest – RF) were tested and compared. Modelling was developed with 70% of the data, while the remaining 30% were used for validation. Key results Results demonstrated that SVM and RF performed better than SLR and SMLR for the prediction of Al, Ba, Bi, Ca, Cd, Ce, Co, Cr, Cu, Fe, Mg, Mn, Mo, P, Pb, Sn, Sr, Ti, Tl, V, Zn and Zr; R2 and RPD values ranged from 0.52 to 0.94 and 1.43 to 3.62, respectively, as well as the lowest values of RMSE and NRMSE values (0.28 to 0.70 mg kg−1). Conclusions and implications Most USEPA 3051a results can be accurately predicted from pXRF data saving cost, time, and ensuring large-scale routine geochemical characterisation of tropical soils in an environmentally friendly way.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3