Thermodynamic properties of alcohol+alkane mixtures. II. Contributions to the excess energies other than those due to hydrogen bonding.

Author:

Smith F,Brown I

Abstract

Measured N.M.R. chemical shifts of the OH proton are reported for a number of n-alcohol + n-alkane systems at 30�C. When plotted as a function of OH group concentration these data show a remarkable similarity to the results obtained for the enthalpy of mixing (HM) per mole of alcohol. For these systems, excluding the lower alcohols, the available i.r., HM, and N.M.R. data correlate separately and each type of data is used to deduce the fraction of free OH as a function of concentration. The three deduced results are contradictory and it is postulated that the results from i.r. are correct whereas those from the HM and also those from the N.M.R. data are invalid at high alcohol concentrations due respectively to a dipole-dipole enthalpy contribution and a related reaction field chemical shift. This also explains the similarity found between the two sets of data. At higher dilutions the results from i.r. and from HM data are in very good agreement on the assumption of an effective hydrogen bond enthalpy of 25 kJ/mol while the infinite dilution results require a decreased value for lower multimers which is in accord with other evidence. The deduced dipole-dipole contribution to the enthalpy appears reasonable from other estimates and makes a large contribution to the enthalpies of mixing. A brief note on alcohol + alcohol systems is included.

Publisher

CSIRO Publishing

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3