Salinity risk assessment of an irrigation development using treated coal seam gas water in the Condamine River catchment

Author:

Crawford M. H.ORCID,Williams K. M.,Biggs A. J. W.ORCID,Dafny E.ORCID

Abstract

All irrigation developments inherently carry a salinity risk, due to an unavoidable change in the water and salt balance. The time frame in which either land or water salinity will develop is driven by the ability of the landscape to absorb the change of water and salt supplied. Factors that influence this are landscape attributes, such as the size of the unsaturated zone and its properties (permeability and drainage), management considerations (land-use changes, water application rate and crop water use) and climate variability (temperature and rainfall). This study assessed the risk of secondary salinity expression occurring in an irrigation area in the Condamine-Balonne catchment in southern inland Queensland, Australia. The objectives were to (1) define the depth, size and properties of the unsaturated zone and regolith, (2) define deep drainage rates for past, present and future land uses and (3) assess this information to calculate the risk that groundwater table rise may result in surface salinity expression. Data collected during field investigations was used to conceptualise the regolith architecture, undertake hydrogeological modelling, estimate the available moisture storage capacity of the unsaturated zone and model paddock deep drainage characteristics. The work identified that irrigation-induced deep drainage had started to mobilise salt stores in the unsaturated zone. It also identified connectivity between land management and salt discharges into the Condamine River. As the water supply for the scheme is scheduled to continue until 2030, there is a clear risk of the unsaturated zone moisture storage capacity being exceeded, leading to both land and surface water salt expressions.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3