Soil nitrogen supply to rice: crop sequence effects

Author:

Beecher HG,Thompson JA,Bacon PE,Dunn BW

Abstract

The effect of cropping sequence on soil nitrogen (N) supply to a rice crop was investigated using an in situ incubation technique in a direct drill system on a red-brown earth soil in south-eastern Australia. The crop sequences were (i) a rice crop in each of the previous 4 summers, (ii) rice then 4 seasons of annual pasture (long pasture phase), (iii) rice, 2 winter cereal crops then 2 seasons of annual pasture (short pasture phase), and (iv) rice then 4 winter cereal crops. This study was undertaken in the fifth year of the crop sequence experiment, when all sequences had returned to rice. Within the rice crop, fertilised (160 kg N/ha) and unfertilised plots were established on the burnt stubble portion of the main crop sequence plots. Nitrogen uptake in unfertilised plots ranged from 79 kg N/ha in continuously cropped rice treatments to 165 kg N/ha in short pasture phase treatments. Application of 160 kg N/ha at permanent flood increased N uptake to 207 kg N/ha for the short pasture treatment. Crop biomass and tillering varied with cropping sequence and increased with fertiliser nitrogen application. Crop sequence had little effect on soil mineral N content during the growing season. However, total soil N mineralisation during the season varied with both crop sequence and fertiliser application. The continuous rice sequence mineralised 119 kg N/ha, whilst the long pasture phase sequence mineralised 246 kg N/ha. Fertiliser application increased mineralised N to 267 and 337 kg N/ha for continuous rice and short pasture phase treatments, respectively. Nitrogen mineralisation rate peaked (4 kg N/ha.day) some 40-50 days after permanent flood, coinciding with panicle initiation and the period of high N demand in the rice crop. Increased N availability after panicle initiation resulted in significantly higher grain yields. This work demonstrates that both the magnitude and timing of N supply affects the grain yield of the rice crop. Nitrogen supply is affected by the previous crop sequences. Practical implications are that pasture phase length of highly clover-dominant pastures could be reduced (from 4 to 2 years) and still provide similar contributions of N to succeeding rice crops; that continuous rice growing might achieve high yields similar to rice in rotation with legume pastures with the judicious application of fertiliser N; and that these N fertiliser applications may have to be quite high to achieve grain yields similar to rice in rotation with legume pastures.

Publisher

CSIRO Publishing

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3