A remotely sensed weight gain model for sheep in the semi-arid Karoo shrublands of South Africa

Author:

Harmse Christiaan J.ORCID,van Niekerk Adriaan

Abstract

The monitoring of animal weight gain is expensive as it often involves the rounding up of animals over large areas and long distances. Such monitoring is an arduous process that causes stress related health problems and weight loss in animals. The aim of this study was to evaluate the use of remotely sensed vegetation indices for modelling sheep weight gain in semi-arid rangelands. The temporal and spatial patterns of grazing were investigated using Sentinel-2 imagery, collar data obtained from a global position system (GPS), and data of sheep weight related to grazing hotspots. Historical animal weight data were compared statistically with nine commonly used spectral indices extracted from Sentinel-2 imagery to determine how vegetation conditions relate to sheep weight gain. Sheep appeared to adapt their grazing behaviour according to time of the year, with the average distance walked per sheep per day in line with previous studies. In contrast to distance walked, sheep at lower stocking densities used less grazing area than at higher densities. The normalised difference vegetation index (NDVI) proved to best model liveweight changes. By combining remote sensing (RS) and GPS data, our understanding of sheep grazing patterns and sheep weight gain was improved. This can lead to the optimisation of production potential through precision farming. The finding has applications for studies conducted on non-reproductive sheep in semi-arid Karoo rangeland systems of South Africa. Because the model is both cost-effective and replicable, it offers a long-term monitoring template for livestock studies elsewhere.

Publisher

CSIRO Publishing

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3