Soil attributes related to water repellency and the utility of soil survey for predicting its occurrence

Author:

Harper RJ,Gilkes RJ

Abstract

The incidence and severity of water repellency was related to five soil class (FC I-V), based on the field texture and dry consistence of the soil surface horizons, derived from a soil survey near Jerramungup, Western Australia. Water repellency was most severe on the FC I soils (median clay content 1.5%), with 66% of samples having water repellency based on the water drop penetration time (WDPT) test >10 s. Corresponding values for the FC II and III soils (2.5%, 4.0% clay) were 37% and 20%. Water repellency did not occur on the most clayey FC IV (8.1% clay) and FC V (22.1% clay) soils. Following stratification of Ap horizon soils by 1% increments of clay content, highly significant linear relationships occurred between log [water drop penetration time (WDPT)] and log [organic carbon (OC)] for the 1-2, 2-3 and 3-4% clay classes, these respectively explaining 50, 35 and 37% of the variation in water repellency. The role of organic carbon in promoting water repellency decreases markedly with increasing clay content, with WDPT being proportional to OC4.5, OC3.9 and OC3.0 for each of these clay classes. A multivariate relationship using measures of amorphous iron, clay and organic matter explained 63% of the variation in water repellency, and this multivariate dependency provides an explanation of the poor bivariate relationships between either clay or organic carbon content and water repellency reported in previous studies. There is a strong geomorphic control of the clay content in the soil surface horizons. Given the effect that clay content has on water repellency, the susceptibility of soils to water repellency can be mapped across farms, with the actual expression of water repellency depending on soil organic matter content, and hence land use. Such discrimination will allow the prediction of water erosion hazard and identify soils requiring ameliorative treatments.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3