A preliminary study into the use of ‘heat pipes’ to prevent high rigor temperature in beef carcasses by increasing cooling rate

Author:

Jacob Robin H.,Beatty David T.,Warner Robyn D.

Abstract

Three experiments were conducted to investigate the use of a custom-made heat pipe to reduce muscle temperature in beef carcasses during the initial part of the refrigeration period post slaughter. The effects of muscle depth (Experiment 1) and radial distance from a heat pipe (Experiment 2) were investigated initially. Then the use of multiple heat pipes was compared with no heat pipes for the loin and hind leg regions of a carcass (Experiment 3). All three experiments were conducted at a commercial beef abattoir in Western Australia. Without heat pipes, the time taken for the temperature to fall to 35°C in the hind leg was 10, 90 and 300 min for depths of 25, 50 and 100 mm from the surface, respectively. Temperature increased with radial distance from a heat pipe and the relative differences in temperature between different positions increased with time. Temperatures 110 min after the commencement of cooling were 35.7, 36.8 and 38.3°C for 20, 40 and 80 mm from the heat pipe, compared with 39.8°C without the pipe. The loin cooled faster than the rump, which cooled faster than the leg. Heat pipes increased the rate of temperature loss in the leg but not the loin. The time taken for the leg temperature to reach 35°C, measured at a depth of 100 mm, reduced from 150 to 76 min. These experiments confirm that heat pipes containing methanol could be used to increase the rate of heat loss from leg muscles in beef carcasses. Further work is required to determine if the magnitude of these increases in cooling rate would improve eating quality for large carcasses.

Publisher

CSIRO Publishing

Subject

Animal Science and Zoology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3