Biological basis for variation in residual feed intake in beef cattle. 1. Review of potential mechanisms

Author:

Herd R. M.,Oddy V. H.,Richardson E. C.

Abstract

There is a growing body of evidence that there is genetic variation in beef cattle feed intake relative to their liveweight and weight gain. Difference in feed intake, above and below that expected or predicted on the basis of size and growth, is measured as residual feed intake. Variation in residual feed intake must be underpinned by measurable differences in biological processes. This paper summarises some plausible mechanisms by which variation in efficiency of nutrient use may occur and presents several testable hypotheses for such variation. A� companion paper [Richardson and Herd (2004) Aust. J. Exp. Ag. 44, 431–441] presents results from experiments on cattle following divergent selection for residual feed intake. There were at least 5 major processes identified by which variation in efficiency can arise. These are associated with variation in intake of feed, digestion of feed, metabolism (anabolism and catabolism associated with and including variation in body composition), activity and thermoregulation. The percentage contribution of different mechanisms, to variation in residual feed intake, was: 9% for differences in heat increment of feeding; 14% for differences in digestion; 5% for differences in body composition; and 5% for differences in activity. Together, these mechanisms may be responsible for about one-third of the variation in residual feed intake. The remaining two-thirds were likely to be associated with heat loss due to variation in other processes, such as protein turnover and ion transport. There is no shortage of candidate mechanisms that, singularly or in combination, might contribute to genetic variation in energy utilisation in ruminants. Further research in beef cattle, to better define these mechanisms and enable their incorporation into breeding programmes, may lead not only to cattle which eat less for the same performance, but are superior in other traits as well.

Publisher

CSIRO Publishing

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3