Differences in mineral ratios between disaggregated and original clay fractions in some South African soils as affected by amendments

Author:

Buhmann C,Rapp I,Laker MC

Abstract

Conflicting information is available on the propensity different soil clays exhibit to dispersion. We therefore assessed the relative stability of the clay components of 12 soil samples, from various parts of South Africa, to predominantly physical disruption by a mild disruptive treatment [mechanical shaking for 5 min in distilled water (DW), and after the addition of phosphogypsum (PG; 2% by weight) and polyacrylamide (PAM; 0.04% by weight)]. The soils differed markedly in their physical and chemical properties. Clay fractions were of mixed mineralogy and dominated by kaolinite, illite, or smectite. Comparison of the clay mineral composition of the disaggregated clay with that of the original <2 �m fraction indicated that the disaggregated clay composition depended on the amendment. In DW, clay-sized quartz and feldspar were disaggregated preferentially over layer silicates. Within the phyllosilicate fraction, the 2:1 clay minerals (mica, smectite) were on average slightly more easily disaggregated than kaolinite. Goethite was the least easily detached clay component in DW. The increase in quartz and feldspar proportions relative to the other components of the clay fraction was dramatically more pronounced when the soils were mixed with PG. With PAM, however, differences in the nature of the clay fraction between original and disaggregated clay were only marginal. Disruption was not particle-size related, as the minerals of the fine-clay fraction showed no selective increase in any of the treatments. These findings indicate that the most inert members of the clay fraction are most actively involved in the process of disaggregation. PG influenced disaggregation in a manner markedly different from that of PAM. Gypsum preferentially stabilised components with a net negative charge over uncharged species. PAM, in contrast, seemed to affect all clay components equally, independent of charge characteristics.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3