Mapping suitability of pasture species using fine-scale soils and rainfall data

Author:

Smith R. W.ORCID,Webb M.,Kidd D.,Hannaway D. B.

Abstract

Species composition is limiting production in >65% of pastures in Tasmania, Australia—a situation not unique to Tasmania. There are many reasons for degradation and poor persistence of improved pastures, with species selection crucial. Selection currently relies on producers making an assessment based on experience, external advice from agronomists and seed merchants, and experimental trial data. This project sought to assess the benefit of using fine-scale soils data and long-term rainfall data to determine the suitability of pasture species at a farm level across >3 Mha of agricultural land in Tasmania. Suitability rules were developed for perennial ryegrass (Lolium perenne L.) and lucerne (Medicago sativa L.) involving growth responses to soil characteristics (pH, soil depth, electrical conductivity, drainage, and coarse fragments) and average annual rainfall. Suitability classes were defined as well suited, suitable, moderately suitable, and unsuitable, with additional subclasses to account for soil limitations that could be mitigated through management. Soil grids were generated using digital soil mapping techniques from ~6500 new and existing site data sources spread across Tasmania. Rainfall data from 539 Bureau of Meteorology rainfall-recording sites were modelled using regression kriging interpolation. Soil pH was found to be a major constraint on lucerne, with 61.3% of the land area having a pH <5.7. Ameliorating the soil with lime could reduce this constraint to 33.5% of the land area. Drainage was another major constraint on lucerne suitability, with 37.8% of land constrained by imperfectly or poorly drained soils. Improving drainage by installing surface or underground drains could reduce the affected area to 22.1%. The mapping showed that perennial ryegrass was constrained by soil pH, with 38.2% of land having a pH <5.5. However, liming could reduce this constraint to just 9.6%. Accurate identification of the likely constraints on pasture production and persistence before sowing and choice of appropriate species and management intervention will result in fewer failed sowings and greater productivity. The feasibility of expanding this approach is being assessed for a larger area of south-eastern Australia and across a wider range of pasture species.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3