Sensitivity and uncertainty analysis of the HYDRUS-1D model for root water uptake in saline soils

Author:

Zeng Wenzhi,Lei Guoqing,Zha Yuanyuan,Fang Yuanhao,Wu Jingwei,Huang Jiesheng

Abstract

A variance-based global sensitivity analysis (extended Fourier amplitude sensitivity test, EFAST) was applied to the Feddes module of the HYDRUS-1D model, and the sensitivity indices including both main and total effects of actual root water uptake (RWUa) to seven Feddes parameters were quantified at different growth stages of sunflower (Helianthus annuus L.): seedling, bud, flowering and maturity. The effects of soil salinity, climate conditions, and crop root growth on parameter sensitivity were explored by analysing three precipitation frequencies and two maximum root depths across four field locations with different soil salinity levels in China’s sunflower-growing regions. Uncertainties for RWUa were evaluated at four stages with varying Feddes parameters for different field locations, precipitation frequencies and maximum root depths. We found that the water stress factor concerning ceasing root water uptake (h4), and two salt stress factors ht and Sp, indicating the salinity threshold and the slope of the curve determining the fractional decline in root water uptake per unit increase in salinity below the threshold, respectively, were three most important Feddes parameters for RWUa estimation in HYDRUS-1D. In addition, the effects of soil salinity and precipitation frequencies were stronger than maximum root depth on the order of the parameters’ impacts on RWUa. Our study suggested that h1, h2, h3h, and h3l might be determined by an economical method (e.g. literature review) in saline soils with limited observations, but it is better to calibrate wilting point (h4) and salt stress parameters (ht and Sp) based on local measurements.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3