The application of virtual fencing technology effectively herds cattle and sheep

Author:

Campbell D. L. M.ORCID,Marini D.,Lea J. M.,Keshavarzi H.,Dyall T. R.,Lee C.

Abstract

Context Herding and mustering procedures during livestock management can be time-consuming, labour intensive, and costly. The ability to gather animals virtually is an enticing notion but technology to do this is not widely commercially available. Aims The eShepherd® virtual fencing system being developed for cattle may be able to remotely herd animals. This system operates via global positioning system, and requires animals to wear a neckband device. Animals are trained to associate an audio tone with an electrical pulse to avoid a virtual boundary. Methods Experiments were conducted with cattle using pre-commercial prototypes of the automated virtual fencing neckbands, and with sheep using manually operated dog training collars implementing the same virtual fencing algorithm to explore the potential of this technology for herding, and optimal fence designs for herding success. In the first experiment, five groups of 12 cattle were moved down a 344 m paddock using three different fence placement designs. Results The most successful design for cattle herding was a back fence that followed behind the animals to prevent them from turning back in the wrong direction. The fences were manually activated by personnel based on the cattle movement. The same type of fence design was manually applied to two groups of six sheep to successfully herd them down a 140 m paddock in the second experiment. Conclusions All herding was highly dependent on the animal’s own pace of movement as no signals were applied to ‘push’ the animals, the systems only prevented movement back in the wrong direction. The pre-commercial prototype of the automated eShepherd® device used is now obsolete and testing with updated versions would be needed to confirm its application for animal herding. Implications These preliminary trials indicate potential for virtual fencing technology to herd livestock, but technology improvements are required, and an automated device for sheep is not yet available.

Publisher

CSIRO Publishing

Subject

Animal Science and Zoology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3