Development of an assay to evaluate differences in germination rate among chickpea genotypes under limited water content

Author:

Vessal Saeedreza,Palta Jairo A.,Atkins Craig A.,Siddique Kadambot H. M.

Abstract

An assay system that provides rapid and reproducible germination under low soil water content (<10% water holding capacity (WHC)) was developed and used to compare how chickpea (Cicer arietinum L.) genotypes complete germination, without the technical difficulties of accurately controlling water levels. The system consisted of small plastic containers (50 mm × 50 mm × 60 mm) filled with river sand and tightly closed (but not sealed) to minimise water loss and maintain constant soil water content during germination. Seed size influenced germination performance at low WHC. Small seeds within a single genotype germinated successfully and entered into the early stages of seedling growth, but germination of large seeds was inhibited, failing to germinate at 5% WHC. Small seeds were more efficient in remobilising seed reserves to seedling tissues than larger seeds. Under optimal WHC, the germination rate and subsequent radicle growth was similar among genotypes but at low WHC, there was variation despite seeds being of comparable size and imbibing equally. This suggests that the physiological threshold of threshold water potential for initiation of germination reflects genotypic differences. The assay system provides a suitable experimental tool to examine gene expression in contrasting genotypes during germination and early stages of seedling growth with a view to identifying the genes involved in superior performance under water limited field conditions.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3