NutriPhysioGenomics applications to identify adaptations of cattle to consumption of ergot alkaloids and inorganic versus organic forms of selenium: altered nutritional, physiological and health states?

Author:

Matthews J. C.,Bridges P. J.

Abstract

NutriPhysioGenomics (NPG) seeks to measure nutrition-responsive genome expression during specific physiological states, thus defining how a given challenge alters the ‘basal’ transcriptome. Application of NGS regimens (transcriptome and bioinformatics analyses) in combination with targeted-gene approaches has revealed cellular mechanisms putatively responsible for complex, whole-animal, metabolic syndromes such as heat stress and subacute ruminal acidosis. Using similar approaches, our laboratory sought to understand how the basal physiology of developing cattle adapted to two prevalent health challenges of forage-based beef cattle production in south-eastern USA: fescue toxicosis and selenium (Se) deficiency. In Model 1, pituitary and hepatic genomic expression profiles of growing beef steers grazing high (E+, n = 9) versus low (E–, n = 10) endophyte-infected tall fescue pastures for 85 days, and consuming sodium selenite (ISe) as a free-choice Se supplement, were compared by a combination of microarray, bioinformatic, and targeted-gene/protein (real-time reverse transcription–PCR, Nanostring, immunoblot) analyses. In Model 2, hepatic genomic expression profiles of growing beef heifers (0.5 kg gain/day) fed a cotton seed hull-based diet and different sources (n = 9) of dietary Se (3 mg/day) supplements (no supplement, Control; inorganic Se, sodium selenite, ISe; organic Se, Sel-Plex; OSe), or a 1.5 mg : 1.5 mg blend of ISe and OSe, MIX) were compared after 168 days of supplementation, as described for Model 1. The results for Model 1 showed, that in the pituitary of E+ steers, expression of genes for prolactin signalling; redox capacity; regulation of lactotroph, gonadotroph, and thyrotroph proliferation; gonadotropin-releasing hormone-mediated signalling; and Se-based metabolism was impaired. Concomitantly, the livers of E+ steers had an increased level of expression of genes encoding proteins responsible for shunting of amino acid carbons into pyruvate and ATP synthesis capacity (oxidative phosphorylation pathway, mitochondrial mass), increased serine and proline biosynthesis, and reduced selenoprotein-mediated metabolism. Result for Model 2 showed that, overall, there were clear differences in the profiles of differentially expressed genes (DEG) among the four Se treatment groups, with the form of Se administered being more reflective of DEG profiles than the total amount of Se assimilated. Moreover, hepatic transcriptomes profiles of MIX heifers revealed an increased potential for selenoprotein synthesis and selenoprotein-mediated metabolism. In addition, several genes involved with increased redox capacity were upregulated in MIX versus ISe heifers. Taken together, our NGS approach characterised adaptation to physiological challenges and, serendipitously, identified suppression of several metabolic pathways by consumption of ergot alkaloid consumption that have the potential to be increased with supplementation of the MIX form of Se.

Publisher

CSIRO Publishing

Subject

Animal Science and Zoology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3