Photosynthetic features of non-Kranz type C4 versus Kranz type C4 and C3 species in subfamily Suaedoideae (Chenopodiaceae)

Author:

Smith Monica E.,Koteyeva Nouria K.,Voznesenskaya Elena V.,Okita Thomas W.,Edwards Gerald E.

Abstract

The objective of this study was to characterise photosynthesis in terrestrial non-Kranz (NK) C4 species, Bienertia sinuspersici Akhani and Suaeda aralocaspica (Bunge) Freitag & Schütze (formerly Borszczowia aralocaspica), compared with closely related Kranz type C4 Suaeda eltonica Iljin and Suaeda taxifolia Standley, and C3 species Suaeda heterophylla Bunge and Suaeda maritima Dumort in subfamily Suaedoideae (Chenopodiaceae). Traditional Kranz type C4 photosynthesis has several advantages over C3 photosynthesis under certain environmental conditions by suppressing photorespiration. The different photosynthetic types were evaluated under varying levels of CO2 and light at 25°C. Both NK and Kranz type species had C4 type CO2 compensation points (corrected for dark-type respiration) and half maximum saturation of photosynthesis at similar levels of atmospheric CO2 (average of 145 µbar for the C4 species v. 330 µbar CO2 for C3 species) characteristic of C4 photosynthesis. CO2 saturated rates of photosynthesis per unit chlorophyll was higher in the C3 (at ~2.5 current ambient CO2 levels) than the C4 species, which is likely related to their higher Rubisco content. The amount of Rubisco as a percentage of total protein was similar in NK and Kranz type species (mean 10.2%), but much lower than in the C3 species (35%). Light saturated rates of CO2 fixation per unit leaf area at 25°C and 340 µbar CO2 were higher in the Kranz species and the NK C4 S. aralocaspica than in the C3 species. In response to light at 340 µbar CO2, there was a difference in rates of photosynthesis per unit Rubisco with NK > Kranz > C3 species. There were no significant differences between the three photosynthetic types in maximum quantum yields, convexity of light response curves, and light compensation points at 25°C. The water use efficiency (CO2 fixed per water transpired) at 340 µbar CO2, 25°C and 1000 µmol quanta m–2 s–1 was on average 3-fold higher in the C4 (NK and Kranz) compared with the C3 species. The results show that the NK species have several C4 traits like the Kranz type species in subfamily Suaedoideae.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3