Turnover of nitrogen from components of lupin stubble to wheat in sandy soil

Author:

Russell C. A.,Fillery I. R. P.

Abstract

The rate of decomposition of 15N-labelled lupin (Lupinus angustifolius) stubble and the use of mineralised 15N by wheat were determined in field experiments on a deep loamy sand previously cropped to lupin. In one experiment, leaf, stem, and pod (pod-valve) components were applied separately to mini-plots that were either left unplanted or subsequently planted to wheat. In the second experiment, leaf and stem components, each of either low or high N concentration, were applied separately to mini-plots which were subsequently planted to wheat. Soil was recovered in layers to a maximum depth of 1 m and subsequently analysed for 15N in NH + 4 , NO-3 , and total N. The net mineralisation of stubble 15N was estimated from the decrease in soil organic 15N (total 15N – inorganic 15N), and the uptake of 15N by wheat was measured periodically. All treatments were characterised by the high retention of lupin stubble 15N in the soil organic matter. Between 9 and 34% of stem and pod 15N, and 19–49% of leaf 15N, was mineralised within a 10-month period. From these data the annual net mineralisation of a typical lupin stubble was estimated at 25–42 kg N/ha, an N benefit similar to that estimated from agronomic trials. Wheat uptake of lupin-stubble 15N ranged from 9 to 27%. Of the stubble components, only the leaf contained sufficient quantities of mineralisable N to be an important source of N for wheat. At wheat maturity in the first experiment, losses of stubble 15N ranged from 13% (leaf) to 7% (stem). In the second experiment, losses of 15N were only observed from the high N treatments (leaf 8%, stem 15·5%). Stubble component chemistry appeared to affect net mineralisation and plant uptake differently. Across both experiments, annual net mineralisation best correlated (R = 0·69) with the N concentration of the stubble components. Wheat N uptake was strongly positively correlated with polysaccharide content (R = 0·89) but negatively correlated with lignin content (R = – 0·79). Although large quantities (58 and 98 kg N/ha) of soil-derived inorganic N were found in the root-zone (–1·0 m) of wheat sown after lupins, and attributed to the decomposition of lupin root systems and surface residues prior to the establishment of each experiment, it is concluded that the short-term decomposition of lupin stubble 15N results in a modest release of inorganic N. Consequently, the primary value of lupin stubble in the N economy of lupin : cereal rotations is to replenish the soil organic N reserve.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3