Author:
Flores-Núñez Víctor M.,Amora-Lazcano Enriqueta,Rodríguez-Dorantes Angélica,Cruz-Maya Juan A.,Jan-Roblero Janet
Abstract
The load and diversity of plant growth-promoting rhizobacteria (PGPR) are used as biomarkers to evaluate the health and quality of the soil. In the present study, the diversity of PGPRs and the physicochemical properties of the soil were used as comparative biomarkers in two adjacent soils (a pine forest soil and an agricultural soil) of the same region in Mexico City in order to investigate the effects of land use change. Bacterial diversity and physicochemical properties differed between the two soils. In the pine forest soil, PGPR were distributed at similar proportions in the Proteobacteria (29.41%), Actinobacteria (29.41%) and Firmicutes (35.29%) phyla, whereas the remaining PGPR were in Bacteroidetes (5.88%). In the agricultural soil, most PGPR belonged to the Phylum Firmicutes (50%), with the remaining belonging to Proteobacteria (22.73%), Actinobacteria (18.18%) and Bacteroidetes (9.09%). Percentages of bacteria producing indole acetic acid (90.91%) and siderophores (40.91%) were higher in agricultural soil. A canonical correspondence analysis (CCA) was used to correlate PGPR with the physicochemical characteristics of the soils. The CCA revealed that differences between both soils and the physicochemical properties of the soils affected isolated bacterial species and their distribution. These results demonstrate that the PGPR are correlated with the physicochemical properties of the soil, exhibiting differences between an agricultural soil and a pine forest soil.
Subject
Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献