Nitrate leaching and pasture production from different nitrogen sources on a shallow stoney soil under flood-irrigated dairy pasture

Author:

Di H. J.,Cameron K. C.

Abstract

The leaching of nitrate (NO3–) in intensive agricultural production systems, e.g. dairy pastures, is a major environmental concern in many countries. In this lysimeter study we determined the amount of NO3– leached following the application of urea, dairy effluent, urine returns, and pasture renovation to a freedraining Lismore stony silt loam (Udic Haplustept loamy skeletal) growing a mixture of perennial ryegrass (Lolium perenne) and white clover (Trifolium repens) pasture. The study showed that NO3–-N leaching losses ranged from 112 to 162 kg N/ha per year, depending on the amount and forms of N applied and pasture conditions. Nitrate leaching under the urine patches was the main contributor to the N leaching loss in a grazed paddock. Nitrate leaching losses were lower for urine applied in the spring (29% of N applied) than for urine applied in the autumn (38–58%). The application of urea or dairy effluent only contributed a small proportion to the total NO3– leaching loss in a grazed paddock. Pasture renovation by direct-drilling may also have caused an increase in NO3– leaching (c. 31 kg N/ha) in the first year. Modelled annual average NO3–-N concentrations in the mixed recharge water in the acquifer were significantly lower than those measured under the rooting zone due to dilution effects by recharge water from other sources (3.9 v. 13–27 mg N/L). Herbage nitrogen offtake and dry matter yield were higher in the urine treatments than in the non-urine treatments. groundwater, denitrification, mineralisation, grazing, forage.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

Cited by 91 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3