Effects of different temperature regimes on flower development, microsporogenesis and fertility in bolting garlic (Allium sativum)

Author:

Mayer Einat Shemesh,Ben-Michael Tomer,Kimhi Sagie,Forer Itzhak,Rabinowitch Haim D.,Kamenetsky Rina

Abstract

Garlic (Allium sativum L.) cultivars do not develop fertile flowers and seeds. Therefore, garlic production and improvement depend exclusively on vegetative propagation. Recent advances in garlic research have enabled fertility restoration and the discovery of fertile and male-sterile genotypes; however, the environmental regulation of the reproductive process is still not clear. Garlic seeds are successfully produced in the Mediterrenean region, where the photoperiod is relatively short, whereas spring and summer temperatures are high. We hypothesise that, in bolting garlic, various stages of florogenesis are differentially regulated by temperature and that high temperatures might obstruct pollen production. The effects of eight combinations of controlled growth temperatures on fertile and male-sterile garlic clones were studied. In both genotypes, a gradual temperature increase before and during anthesis favoured intact flower development. Surprisingly, continuous exposure to moderate temperatures during the entire growth period resulted in poor flowering, anther abortion and reduced pollen production. In the male-sterile genotype, no growth regime improved pollen production, which is controlled by genetic mechanisms. In the male-fertile genotype, gradual temperature increase supported pollen production but a sharp transition to high temperatures resulted in rapid flower senescence and pollen abortion, thus supporting our research hypothesis. In both fertile and male-sterile plants, the most vulnerable phase of microsporogenesis is the unicellular microspore stage. Tapetal malformation is the major cause for malnutrition of the microspores, with consequent production of nonviable pollen grains.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3