Does nitrogen fixation of commercial, dryland chickpea and faba bean crops in north-west New South Wales maintain or enhance soil nitrogen?

Author:

Schwenke G. D.,Peoples M. B.,Turner G. L.,Herridge D. F.

Abstract

Summary. Nitrogen (N2 ) fixation accords pulse crops the potential to sustain or enhance total soil nitrogen (N) fertility. However, regional field experiments have shown that this potential is often not realised because N2 fixation is inhibited by the supply of nitrate N in the root zone (0–90 cm) coupled with a low demand for N during plant growth. The objectives of this study were to establish whether commercially grown chickpea and faba bean crops in the northern grain belt of New South Wales were depleting, maintaining or enhancing soil N fertility, and whether current farm management practices were maximising the N2 fixation potential of the crops. Fifty-one rainfed crops of chickpea (Cicer arietinum L.) and faba bean (Vicia faba L.) were surveyed in the Moree, Walgett and Gunnedah districts of north-west New South Wales during the winters of 1994 and 1995. Nitrogen fixation was measured using the natural 15N abundance technique. Net N balance was calculated for each crop by subtracting grain N harvested from fixed N2. Soil, plant and fallow conditions with potential to influence N2 fixation were also documented. The percentage of crop N derived from N2 fixation (Pfix) ranged from 0 to 81% for chickpea and 19 to 79% for faba bean. Nitrogen fixation of chickpea was uniformly low in the 1994 drought. Total N2 fixed ranged from 0 to 99 kg/ha for chickpea and 15 to 171 kg/ha for faba bean. Net N balance ranged from –47 to +46 kg N/ha for chickpea crops, and –12 to +94 kg N/ha for faba bean crops. About 60% of the difference in Pfix between chickpea and faba bean at the average level of soil nitrate (65 kg/ha) was explained by the higher N demand of the latter. The remaining 40% could be due to greater tolerance of the faba bean symbiosis to nitrate effects. In addition, faba bean had a lower N harvest index than chickpea, which meant that proportionally less N needed to be fixed by faba bean to offset removal of grain N. On average, Pfix needed to exceed 35% for chickpea and 19% for faba bean to balance soil N. The equivalent soil nitrate levels were 43 kg nitrate N/ha for chickpea and 280 kg/ha for faba bean (extrapolated from the relationship between measured Pfix and soil nitrate). Double-cropping chickpea into summer cereal or grass pasture stubble provided the most consistent strategy for achieving the low levels of soil nitrate.

Publisher

CSIRO Publishing

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3