Effect of banana flower powder on rumen fermentation, synthesis of microbial protein and nutrient digestibility in swamp buffaloes

Author:

Wanapat Metha,Ampapon Thiwakorn,Phesatcha Kampanat,Kang Sungchhang

Abstract

Replacement of chemical compounds by dietary sources as rumen enhancers have been of great interest and concern by researchers. Four, rumen-fistulated swamp buffalo bulls with average liveweight of 365 ± 15.0 kg were randomly assigned to treatments, to investigate the impact of banana flower powder (BAFLOP) as a rumen modifier on pH, rumen fermentation, nutrient digestibility, microbial protein synthesis and volatile fatty acids. All buffaloes were allotted according to a 4 × 4 Latin square design. Dietary supplementation treatments were as follows: 2 g concentrate/kg bodyweight (BW; T1), 15 g concentrate/kg BW (T2), 15 g concentrate/kg BW plus BAFLOP 300 g/head.day (T3) and 15 g concentrate/kg BW plus BAFLOP 600 g/head.day (T4). Untreated rice straw was fed ad libitum. The findings showed that total feed intake was increased in buffaloes fed a diet supplemented with concentrate at 2 g/kg BW, while rice straw intake was reduced. Nutrient digestibility was increased by BAFLOP supplementation at both levels (T3 and T4; P < 0.05). Ruminal pH dropped (5.9) in buffaloes fed with concentrate at 15 g/kg BW, while buffaloes with BAFLOP supplementation could maintain ruminal pH when fed with high-concentrate diet. Ruminal ammonia-nitrogen increased in the buffaloes fed concentrate at 15 g/kg BW, especially with BAFLOP supplementation. Feeding high-concentrate diet increased the concentrations of ruminal total volatile fatty acids and propionic acid (C3), while the concentration of acetic acid and the acetic acid:C3 ratio and methane production were subsequently reduced (P < 0.05). In addition, efficiency of microbial protein synthesis was increased by the BAFLOP feeding (P < 0.05). In the present study, using BAFLOP as a dietary rumen enhancer at 300–600 g/head.day resulted in an increased rumen pH, C3 concentration, nutrient digestibility and microbial protein synthesis, while mitigating ruminal methane production. Higher nutrient digestibility and lower ruminal methane production, more dietary energy and production efficiency are expected.

Publisher

CSIRO Publishing

Subject

Animal Science and Zoology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3