Plant Growth and Water Use With Limited Water Supply in High CO2 Concentrations. II. Plant Dry Weight, Partitioning and Water Use Efficiency

Author:

Morison JIL,Gifford RM

Abstract

Plants of 18 species were grown from seed in two glasshouses, one with normal and one with twice the present atmospheric CO2 concentration. Plants were grown singly with a diminishing soil moisture content and were harvested either after the initial period of rapid growth and water use or after subsequent prolonged soil drying. Plant dry weight (DW) was increased substantially by high CO2 in all but two species (cotton and maize) at the first harvest (average increase of 65%, range from 26 to 132%). Over the whole period, increases in DW with high CO2 (average of 53%) were associated with increases in water use efficiency (WUE) of between 40 and 80% (average of 67% for all species). Cowpea and sunflower plants grown through two additional soil moisture drying cycles showed 26 and 21% increases, respectively, in the effect of high CO2 on WUE. Approximate calculations indicated that high CO2 increased the apparent efficiency of use of intercepted radiation by 11-49% (average of 27%) in C3 species but in C4 species there was no effect. The effect of high CO2 on the partitioning of DW varied between species and between harvests. During the first period, 14 species showed increased specific leaf weight of 10-40% in high CO2 and 16 species showed no effect of high CO2 on the root : shoot ratio. Over the whole experiment, eight species had lower leaf to total plant weight ratio in high CO2 attributable to increased non-leaf aerial tissues.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3