Why does the synthesis of N-phenylbenzamide from benzenesulfinate and phenylisocyanate via the palladium-mediated Extrusion–Insertion pathway not work? A mechanistic exploration

Author:

Yang Yang,Canty Allan J.,O’Hair Richard A. J.ORCID

Abstract

The gas-phase extrusion–insertion (ExIn) reactions of the palladium complexes [(phen)nPd(O2SC6H5)]+ (phen = 1,10-phenanthroline, n = 1 or 2), were investigated in the gas phase by multistage mass spectrometry (MSn) experiments consisting of electrospray ionisation and a linear ion trap combined with density functional theory (DFT) calculations. Desulfination of palladium sulfinate cations under collision-induced dissociation (CID) generates the organopalladium intermediates [(phen)nPd(C6H5)]+. Of these two organometallic cations, only [(phen)Pd(C6H5)]+ reacts with phenyl isocyanate via insertion to yield [(phen)Pd(NPhC(O)C6H5)]+. The formation of a coordinated amidate anion is supported by DFT calculations. In exploring this reactivity in the solution phase, we found that heating a mixture of benzenesulfinic acid, phenylisocyanate and palladium trifluoroacetate under a range of different conditions (ligand free versus with ligand, different solvents, addition of acid or base) failed to lead to the formation N-phenyl-benzamide in all cases. Instead, biphenyl was formed and could be isolated in a yield of 46%. DFT calculations using a solvent continuum reveal that the barrier associated with the insertion reaction lies above the competing sequential reactions of desulfination of a second phenyl sulfinate followed by reductive elimination of biphenyl.

Publisher

CSIRO Publishing

Subject

General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3