A model of vegetative flush development and its potential use managing macadamia (Macadamia integrifolia) tree canopies

Author:

Wilkie J. D.,Sedgley M.,Olesen T.

Abstract

We examined the relationship between shoot growth and temperature and solar radiation in macadamia (Macadamia integrifolia Maiden and Betche, M. integrifolia × tetraphylla Johnson) as an aid to developing pruning strategies for this crop. Trees growing at Alstonville (28.9°S) in northern NSW, Australia, were pruned at various times to promote vegetative flushing under a range of environmental conditions. Flush development in macadamia is cyclic: bud release and stem elongation followed by a period of dormancy, before bud release of the subsequent flush. The rate of bud release after pruning was best correlated with the product of the mean temperature and solar radiation (r2 = 0.75, P < 0.0001), whereas the rate of flush development was best correlated with the mean temperature (r2 = 0.76, P < 0.0001). The number of buds released per pruned stem was greater under higher temperatures and solar radiation (r2 = 0.37, P < 0.001), but the length of the flush after pruning decreased with increasing temperatures (r2 = 0.32, P < 0.01). The descriptive models were combined with long-term weather data to predict the duration and characteristics of flushes following pruning at various times of the year along Australia’s eastern seaboard, from Mareeba (17.0°S) to Coffs Harbour (30.3°S). Flush duration and stem length following June pruning were predicted to be greater than following early autumn or September pruning and to vary from year to year, and with location (latitude). We discuss the implications of the model predictions for productivity and propose pruning times intended to optimise flowering and yield. Further research is required to test these proposed pruning strategies.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3