Interactions between microbial consortia in biofilms: a paradigm shift in rumen microbial ecology and enteric methane mitigation

Author:

Leng R. A.

Abstract

Minimising enteric CH4 emissions from ruminants is a current research priority because CH4 contributes to global warming. The most effective mitigation strategy is to adjust the animal’s diet to complement locally available feed resources so that optimal production is gained from a minimum of animals. This essay concentrates on a second strategy – the use of feed additives that are toxic to methanogens or that redirect H2 (and electrons) to inhibit enteric CH4 emissions from individual animals. Much of the published research in this area is contradictory and may be explained when the microbial ecology of the rumen is considered. Rumen microbes mostly exist in organised consortia within biofilms composed of self-secreted extracellular polymeric substances attached to or within feed particles. In these biofilms, individual colonies are positioned to optimise their use of preferred intermediates from an overall process of organic matter fermentation that generates end-products the animal can utilise. Synthesis of CH4 within biofilms prevents a rise in the partial pressure of H2 (pH2) to levels that inhibit bacterial dehydrogenases, and so reduce fermentation rate, feed intake and digestibility. In this context, hypotheses are advanced to explain changes in hydrogen disposal from the biofilms in the rumen resulting from use of anti-methanogenic feed additives as follows. Nitrate acts as an alternative electron sink when it is reduced via NO2– to NH3 and CH4 synthesis is reduced. However, efficiency of CH4 mitigation is always lower than that predicted and decreases as NO3– ingestion increases. Suggested reasons include (1) variable levels of absorption of NO3–or NO2– from the rumen and (2) increases in H2 production. One suggestion is that NO3– reduction may lower pH2 at the surface of biofilms, thereby creating an ecological niche for growth of syntrophic bacteria that oxidise propionate and/or butyrate to acetate with release of H2. Chlorinated hydrocarbons also inhibit CH4 synthesis and increase H2 and formate production by some rumen methanogens. Formate diffuses from the biofilm and is converted to HCO3– and H2 in rumen fluid and is then excreted via the breath. Short-chain nitro-compounds inhibit both CH4 and formate synthesis when added to ruminal fluid but have little or no effect in redirecting H2 to other sinks, so the pH2 within biofilms may increase to levels that support reductive acetogenesis. Biochar or activated charcoal may also alter biofilm activity and reduce net CH4 synthesis; direct electron transfer between microbes within biofilms may also be involved. A final suggestion is that, during their sessile life stage, protozoa interact with biofilm communities and help maintain pH2 in the biofilm, supporting methanogenesis.

Publisher

CSIRO Publishing

Subject

Animal Science and Zoology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3