Surficial geochemistry and bioaccessibility of tellurium in semiarid mine tailings

Author:

Hayes Sarah M.ORCID,Ramos Nicole A.

Abstract

Environmental contextTellurium can be more toxic than arsenic, but its fate in the surficial environment is poorly understood. We studied tellurium behaviour in semiarid mine tailings and found that most tellurium is associated with iron (oxy)hydroxides as tellurate (TeVI), the less toxic oxidation state. Iron (oxy)hydroxides are likely to control the fate of Te in the surficial environment and may effectively sequester Te oxyanions released by oxidative weathering. AbstractTellurium (Te) is a critical element owing to its use in solar technology. However, some forms are highly toxic. Few studies have examined Te behaviour in the surficial environment, thus little is known about its potential human and environmental health impacts. This study characterises two physicochemically distinct Te-enriched mine tailings piles (big and flat tailings) deposited by historic gold (Au) mining in the semiarid Delamar mining district, Nevada, USA. The big tailings are characterised by smaller particle size and higher concentrations of potentially toxic elements (up to 290mgTekg−1), which are enriched at the tailings surface. In contrast, the flat tailings have larger particle size and properties that are relatively invariant with depth. Based on the sulfate to sulfide ratio, the tailings were determined to be sulfate dominated, which suggested a high degree of weathering, although the flat tailings did contain significant amounts of sulfides (~40%). Tellurium X-ray absorption spectroscopy of the big tailings indicates that tellurate, the less toxic Te species, is the principal form of Te. Electron microscopy indicates that most of the Te present at the site is associated with iron (oxy)hydroxides, and sometimes with other potentially toxic elements, especially lead and antimony. Physiologically-based extraction tests indicate that substantially more Te is solubilised in synthetic stomach fluids than in lung fluids, with gastric bioaccessibility ranging from 13 to 31% of total Te. This points to low to medium bioaccessibility, which is common for iron (oxy)hydroxide-associated elements. Together, these results represent a preliminary assessment of Te surficial behaviour in a semiarid environment and indicate that Te in these tailings represent a moderate health concern.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3