Effects of local testicular heat treatment on Leydig cell hyperplasia and testosterone biosynthesis in rat testes

Author:

Li Zhonghai,Tian Jianhai,Cui Genggang,Wang Meng,Yu Dapeng

Abstract

Cryptorchidism or local testicular heat treatment induces reversible oligospermia or azoospermia in rodents and humans via increased germ cell apoptosis. Research in this field has concentrated on the impact of heat on spermatogenesis, with rather little attention paid to the molecular effects of heat treatment on Leydig cell function. In the present study, we investigated the effects of exposure to heat stress on the proliferative activity and testosterone biosynthesis of Leydig cells. We subjected adult rats to a single local testicular heat treatment of water at 43°C for 30 min. The expression of Leydig cell-specific markers, such as cholesterol side-chain cleavage (P450SCC) and 3β-hydroxysteroid dehydrogenase, was evaluated by immunohistochemistry and western blot analysis. The proliferative activity of Leydig cells was detected by immunostaining with proliferation-associated markers, including Ki67, bromodeoxyuridine and phosphohistone-H3 (pHH3). The mRNA and protein levels of cell cycle proteins and testosterone synthesis-related enzymes were measured by real-time polymerase chain reaction and western blot analysis, respectively. The testes of heat-treated rats contained 50% more Leydig cells than those of control rats, indicating induction of Leydig cell hyperplasia by testicular heat treatment. Increased proliferative activity in Leydig cells, evidenced by enhanced expression of cell cycle proteins, was the main cause of Leydig cell hyperplasia. In addition, heat treatment reduced serum and testicular testosterone concentrations. Consistent with this finding, heat stress downregulated two enzymes required for testosterone biosynthesis, namely cytochrome P450, family 17 (CYP17) and steroidogenic acute regulatory protein, in Leydig cells. Together, the results suggest that testicular heat leads to Leydig cell hyperplasia and a reduction in testosterone biosynthesis in adult rat testes.

Publisher

CSIRO Publishing

Subject

Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3