Spatial heterogeneity of soil physico-chemical properties in contrasting wetland soils in two agro-ecological zones of Lesotho

Author:

Nkheloane T.,Olaleye A. O.,Mating R.

Abstract

Wetlands are complex ecosystems, often exhibiting considerable spatial variability, making the understanding of soil spatial relationships within them difficult. A study was conducted to evaluate spatial variability of soil physico-chemical properties in two contrasting wetlands in two agro-ecological zones (AEZs) of Lesotho. Soil samples were collected along two transects in mini-pits dug at different depths at 50-m intervals. The collected samples were analysed for particle size, pH, soil organic carbon (SOC), SOC pool, available phosphorus (Av-P), cation exchange capacity (CEC), and base cations. Results showed that within-site variability was very low for sand particles and pH (coefficient of variation <15% for both properties). Soil physical properties generally showed less spatial heterogeneity than chemical properties, which differed widely within and between the study sites. There was generally low correlation between soil properties, and SOC accounted for most of the variation observed at both sites, especially T’sakholo with partial R2 = 94%; at Thaba-Putsoa, partial R2 = 44%. Geostatistical analysis showed that all of the nugget to sill ratios (NSR) showed strong spatial dependence (i.e. NSR of 54–94%) except SOC (T’sakholo stream-bank) with no spatial dependence, with the nugget accounting for 23.43%. We therefore conclude that further wetland studies in Lesotho should attempt to quantify not only the soil properties or processes under investigation but also their spatial variability, because this spatial variability can provide insight into underlying ecosystem processes and may itself indicate wetland condition. In addition, results of stepwise multiple regression showed that SOC and texture could be used across these sites for the sustainable management of these wetlands.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3