Role of inorganic and organic soil amendments on immobilisation and phytoavailability of heavy metals: a review involving specific case studies

Author:

Bolan N. S.,Duraisamy V. P.

Abstract

Soil is not only considered as a 'source' of nutrients for plant growth, but also as a 'sink' for the removal of contaminants from industrial and agricultural waste materials. The origin of heavy metal contamination of soils may be anthropogenic as well as geogenic. With greater public awareness of the implications of contaminated soils on human and animal health, there has been increasing interest amongst the scientific community in developing cost-effective and community-acceptable remediation technologies for contaminated sites. Unlike organic contaminants, most metals do not undergo microbial or chemical degradation, thereby resulting in their accumulation in soils. The mobilisation of metals in soils for plant uptake and leaching to groundwater can, however, be minimised through chemical and biological immobilisation. Recently there has been increasing interest in the immobilisation of metals using a range of inorganic compounds, such as lime and phosphate (P) compounds, and organic compounds, such as 'exceptional quality' biosolids. In this review paper, the results from selected New Zealand studies on the potential value of a range of soil amendments (phosphate compounds, liming materials, and biosolids) in the immobilisation of cadmium (Cd), chromium (Cr), and copper (Cu) is discussed in relation to remediation of contaminated soils. These case studies have indicated that lime is effective in reducing the phytoavailability of Cd and Cr(III), phosphate compounds are effective for Cd, and organic amendments are effective for Cu and Cr(VI). The mechanisms proposed for the immobilisation and consequent reduction in the phytoavailability of metals by the soil amendments include: enhanced metal adsorption through increased surface charge (e.g. phosphate-induced metal adsorption), increased formation of organic and inorganic metal complexes (e.g. cadmium-phosphate complex and copper-organic matter complex), precipitation of metals (e.g. chromic hydroxide), and reduction of metals from higher valency mobile form to lower valency immobile form [e.g. Cr(VI) to Cr(III)]. These case studies indicated that since bioavailability is the key factor for remediation technologies, chemical or biological immobilisation of metals may be a preferred option.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3