Author:
Hamer P. D.,Shallcross D. E.,Yabushita A.,Kawasaki M.
Abstract
Environmental context. The study of surface photochemical ozone production on the Antarctic continent has direct relevance to climate change and general air quality and is scientifically noteworthy given the otherwise pristine nature of this environmental region. The identification of possible direct ozone emissions from snow surfaces and their contribution to the already active photochemical pollution present there represents a unique physical phenomenon. This process could have wider global significance for other snow-covered regions and therefore for global climate change.
Abstract. O(3P) emissions due to photolysis of nitrate were recently identified from ice surfaces doped with nitric acid. O(3P) atoms react directly with molecular oxygen to yield ozone. Therefore, these results may have direct bearing on photochemical activity monitored at the South Pole, a site already noted for elevated summertime surface ozone concentrations. NO2 is also produced via the photolysis of nitrate and the firn air contains elevated levels of NO2, which will lead to direct emission of NO2. A photochemical box model was used to probe what effect O(3P) and NO2 emissions have on ozone concentrations within the South Pole boundary layer. The results suggest that these emissions could account for a portion of the observed ozone production at the South Pole and may explain the observed upward fluxes of ozone identified there.
Subject
Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献