Impact of grassland afforestation on soil carbon in New Zealand: a review of paired-site studies

Author:

Davis M. R.,Condron L. M.

Abstract

Afforestation of grassland provides an opportunity for partial mitigation of increasing carbon dioxide (CO2) levels in the atmosphere through carbon (C) fixation in biomass, but little is known of the impact of afforestation on soil C. To determine the impact of afforestation on soil C levels, data from published papers, theses, and unpublished studies of paired adjoining grassland and afforested sites in New Zealand were assembled and compared. The forest sites within each pair were planted into grassland rather than some other land use, and were a minimum of 10 years old. A total of 28 paired sites had information on both mineral soil C concentration and bulk density, 17 with the forest part of the pair aged 10-20 years, and 11 with the forest aged more than 20 years. Forest floor C information was available for 9 sites. Only 3 of the forest stands had been harvested. Results indicated that afforestation of grassland soils reduces upper mineral soil (mainly 0-10 cm layer) C levels by about 4.5 t/ha or 9.5% in the short-term; however, beyond forest age 20 years there was no difference mineral in soil C between the two systems. Soil bulk density in the 0-10 cm layer was unaffected by afforestation during the first rotation. This allowed comparison of a larger number of sites (27 with forest aged 10-20 years, 18 with forest aged >20 years) that had C concentration data only. Analysis of this larger data set confirmed results obtained from the C mass data alone. Effects of afforestation on mineral soil C were most pronounced in the upper soil and declined rapidly with depth to the extent that at most sites there was no influence of afforestation on soil C below the 0-10 cm layer. At some sites, however, the impact of afforestation proceeded to greater depths, and further study is required to determine reasons for differences between sites in this regard. The impacts of afforestation on soil C observed from the paired-site studies agree well with those of recent analyses for the upper soil layer using New Zealand national soils databases. At greater depths, however, analyses using the databases appear to greatly overestimate the influence of afforestation on soil C. The available data indicate that C accumulating in the forest floor is likely to exceed any short-term reduction in mineral soil C arising from grassland afforestation.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3