Coordination of nuclear and cytoplasmic oocyte maturation in eutherian mammals

Author:

Eppig JJ

Abstract

As oocytes near the end of their growth phase, they become competent to undergo two aspects of maturation, cytoplasmic and nuclear. Both are essential for the formation of an egg having the capacity for fertilization and development to live offspring. Nuclear maturation encompasses the processes reversing meiotic arrest at prophase I and driving the progression of meiosis to metaphase II. Cytoplasmic maturation refers to the processes that prepare the egg for activation and preimplantation development. This review focuses on the developmental programmes whereby oocytes at the germinal vesicle (GV) stage acquire competence to undergo nuclear and cytoplasmic maturation, the coordination of programmes regulating the acquisition of these competencies in GV-stage oocytes, and the coordination of the maturational processes themselves. Although the developmental programme of the GV-stage oocyte for acquiring competence to complete preimplantation development does not appear to be tightly linked to the acquisition of competence to complete nuclear maturation, GV breakdown (GVB) is probably essential for activating some critical aspects of cytoplasmic maturation, particularly those related to fertilization and activation. Nuclear and cytoplasmic maturation are normally coordinated by this mechanism requiring the mixing of the GV contents with the cytoplasm at the time of GVB, but some processes of cytoplasmic maturation related to successful preimplantation development probably still occur without coordination with nuclear maturation. Thus, continued differentiation of GV-stage oocytes is necessary after the acquisition of competence to undergo nuclear maturation, to allow for the deposition of the maternal factors required for the development of preimplantation embryos beyond the 2-cell stage.

Publisher

CSIRO Publishing

Subject

Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology

Cited by 368 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3