Ecotypic variation for seed dormancy contributes to the success of capeweed (Arctotheca calendula) in Western Australia

Author:

Dunbabin Matthew T.,Cocks P. S.

Abstract

The seed dormancy characteristics of 2 capeweed [Arctotheca calendula (L.) Levyns] ecotypes from Western Australia were studied to determine aspects of seed dormancy that contribute to the success of this species in southern Australia. Short- and long-term dormancy pattern of buried and soil surface seed, effect of summer temperatures on afterripening, and effect of temperature on seed germination were investigated using seed produced in a common environment. There were large differences in the seed dormancy pattern of the 2 ecotypes studied. On the soil surface, >95% of seed of the Mt Barker ecotype became non-dormant and germinated in the first year, the remainder germinating the following season. In contrast, only 5% of Mullewa seed germinated in the first year, with 75% germinating in the second year and 20% of seed remaining dormant after 2 years. Cycling of dormancy was observed for buried seed of both ecotypes, with periods of non-dormancy corresponding with the likely timing of the break of the season. Dormancy cycling was also apparent in seed stored under constant conditions in the laboratory. Burial prevented germination of both ecotypes; however, the ability to resist germination while buried was lost in 30% of the Mt Barker seed in the second season. Differences in the duration of dormancy of soil surface and buried capeweed seed have evolved as an adaptation to the different environments likely to be experienced by plants at their site of collection. All seeds possessed primary dormancy at maturity, with any afterripening during the first year occurring by the end of summer. Afterripening was enhanced by exposure to typical soil surface temperatures, providing some protection against germination during early summer rainfall. Protection from late summer rains is insured by the inability of seed to germinate at temperatures >30°C and a relatively slow rate of germination. These features of capeweed seed dormancy, combined with the ability to evolve genetically distinct populations suited to particular environments, help explain why capeweed is so widespread and abundant across southern Australia.

Publisher

CSIRO Publishing

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3