Stomatal aperture can compensate altered stomatal density in Arabidopsis thaliana at growth light conditions

Author:

Büssis Dirk,von Groll Uritza,Fisahn Joachim,Altmann Thomas

Abstract

Stomatal density of transgenic Arabidopsis thaliana plants over-expressing the SDD1 (stomatal density and distribution) gene was reduced to 40% and in the sdd1-1 mutant increased to 300% of the wild type. CO2 assimilation rate and stomatal conductance of over-expressers and the sdd1-1 mutant were unchanged compared with wild types when measured under the light conditions the plants were exposed to during growth. Lower stomatal density was compensated for by increased stomatal aperture and conversely, increased stomatal density was compensated for by reduced stomatal aperture. At high light intensities the assimilation rates and stomatal conductance of SDD1 over-expressers were reduced to 80% of those in wild type plants. Areas beneath stomata and patches lacking stomata were analysed separately. In areas without stomata, maximum fluorescence yield (Fv / Fm) and quantum yield of photosystem II (Φ PSII) were significantly lower than in areas beneath stomata. In areas beneath stomata, Fv / Fm and Φ PSII were identical to levels measured in wild type leaves. At high light intensities over-expressers showed decreased photochemical quenching (qP) compared with wild types. However, the decrease of qP was significantly stronger in areas without stomata than in mesophyll areas beneath stomata. At high CO2 partial pressures and high light intensities CO2 assimilation rates of SDD1 over-expressers did not reach wild type levels. These results indicate that photosynthesis in SDD1 over-expressers was reduced because of limiting CO2 in areas furthest from stomata at high light.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3