Author:
Binder Natalie K.,Mitchell Megan,Gardner David K.
Abstract
Maternal obesity results in reproductive complications, whereas the impact of paternal obesity is unclear. In the present study, the effects of parental obesity on preimplantation embryo cell cycle length and carbohydrate utilisation were investigated. Maternal and paternal obesity were assessed independently by deriving zygotes from normal or obese C57BL/6 female mice mated with normal Swiss male mice (maternal obesity), or from normal Swiss female mice mated with normal or obese C57BL/6 male mice (paternal obesity). Zygotes were cultured in vitro and development was then assessed by time-lapse microscopy and metabolism determined using ultramicrofluorescence. Maternal obesity was associated with a significant delay in precompaction cell cycle kinetics from the 1-cell stage. A significant increase in glucose consumption by embryos from obese compared with normal females occurred after compaction, although glycolysis remained unchanged. Similarly, paternal obesity led to significant delays in cell cycle progression during preimplantation embryo development. However, this developmental delay was observed from the second cleavage stage onwards, following embryonic genome activation. Blastocysts from obese males showed disproportionate changes in carbohydrate metabolism, with significantly increased glycolysis. Overall, metabolic changes were not inhibitory to blastocyst formation; however, blastocyst cell numbers were significantly lower when either parent was obese. These data suggest that both maternal and paternal obesity significantly impacts preimplantation embryo physiology.
Subject
Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology
Cited by
68 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献