Effect of episodic rainfall on aqueous metal mobility from historical mine sites

Author:

Valencia-Avellan Magaly,Slack Rebecca,Stockdale Anthony,Mortimer Robert John George

Abstract

Environmental contextEpisodic extreme rainfall events may affect metal dynamics in rivers flowing within historical metal mining areas. This study provides an analysis of the water chemistry and geochemical processes associated with mobilisation of metals during episodic rainfall events. Findings could be used to assess the environmental quality of streams draining spoil waste areas with similar geochemical conditions, and thereby be used to guide future management strategies. AbstractThe increasing frequency and magnitude of episodic rainfall events may affect historical metal mining areas by remobilisation and deposition of metal-rich sediments and enhancing metal-rich run off, impacting river water quality. This study assesses the effects of episodic rainfall in a Carboniferous headwater catchment contaminated by historical Pb and Zn mining. Comprehensive hourly water chemistry measurements combined with modelling using PHREEQC, WHAM/Model VII and WHAM-FTOX were used in this assessment. For the episodic event, we measured flow increases from a baseline of 0.05 to 2.12 m3 s−1 at peak flow. Changes in metal concentration were most marked for ephemeral tributary, with Pb increasing from a baseline concentration of 55 μg L−1 to a peak of 576 μg L−1. Behaviour for Pb showed great affinity to form organic complexes or bind to colloidal Al and Fe oxides, whereas for Zn and the tributary flowing subsurface a more complex behaviour was observed. For example, the dissolution of secondary metal carbonate minerals (e.g. smithsonite (ZnCO3)) is likely constrained by higher concentrations of carbonate and bicarbonate derived from increased bedrock weathering under flow conditions induced by episodic rainfall. The abundance of secondary mineral sources and circumneutral pH present during episodic rainfall are important factors controlling the mobilisation of Pb and Zn. Furthermore, episodic rainfall events could enhance metal toxicity but there are aggravating and mitigating factors that depend on site-specific chemical changes. Overall, this study highlighted the complexity of metal mobility and toxicity during these events.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3