Simulation of water-limited growth of the forage shrub saltbush (Atriplex nummularia Lindl.) in a low-rainfall environment of southern Australia

Author:

Descheemaeker K.,Smith A. P.,Robertson M. J.,Whitbread A. M.,Huth N. I.,Davoren W.,Emms J.,Llewellyn R.

Abstract

Old man saltbush (Atriplex nummularia Lindl.) is a useful forage shrub for livestock in the low-rainfall areas of the world, and particularly in Australia. In these semi-arid and arid environments, saltbush is valuable for increasing the production from otherwise marginal areas of the farm and during drought periods when there are few feed alternatives. The ability to predict the growth and development of perennial forages such as old man saltbush in response to rainfall, soils and farm management is necessary for farming system planning and design purposes. A field experiment was conducted at Waikerie, South Australia, to inform the development of a new forage shrub model for use in the APSIM framework. The model takes into account the common setup of saltbush plantations in alley systems, by simulating light interception and water uptake for interacting shrub and inter-row zones separately. This is done by modelling the canopy and root system development. Field data across three soil types along a landscape catena showed that the model was able to satisfactorily predict daily biomass accumulation, partitioning into leaf and woody biomass, and regrowth after grazing. The model was sensitive to properties associated with the root system, and with limited parameterisation can be tailored to simulate different clonal cultivars. The model can now be used in the APSIM framework to assess temporal and spatial dynamics of forage systems combining shrubs with herbaceous pasture components.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3