Evaluation of the impacts of deep open drains on groundwater levels in the wheatbelt of Western Australia

Author:

Ali Riasat,Hatton Tom,George Richard,Byrne John,Hodgson Geoff

Abstract

Abstract. Over one million hectares of the wheatbelt of Western Australia (WA) are affected by secondary salinisation and this area is expected to increase to between 3 and 5 million hectares if current trends continue. Deep open drains, as an engineering solution to dryland salinity, have been promoted over the past few decades; however, the results of initial experiments were variable and no thorough analysis has been done. This research quantifies the effects of deep open drains on shallow and deep groundwater at farm and subcatchment level. Analysis of rainfall data showed that the only dry year (below average rainfall) after the construction of drainage in the Narembeen area of WA (in 1998 and 1999) was 2002. The dry year caused some decline in groundwater levels in the undrained areas but had no significant impact in the drained areas. The study found that the effect of drains on the groundwater levels was particularly significant if the initial water levels were well above the drain bed level, permeable materials were encountered, and drain depth was adequate (2.0–3.0 m). Visual observations and evidence derived from this study area suggested that if the drain depth cut through more permeable, macropore-dominated siliceous and ferruginous hardpans, which exist 1.5–3 m from the soil surface, its efficiency exceeded that predicted by simple drainage theory based on bulk soil texture. The effect of drains often extended to distances away (>200 m) from the drain. Immediately following construction, drains had a high discharge rate until a new hydrologic equilibrium was reached. After equilibrium, flow largely comprised regional groundwater discharge and was supplemented by quick responses driven by rainfall recharge. Comparison between the hydrology of the drained and undrained areas in the Wakeman subcatchment showed that, in the valley floors of the drained areas, the water levels fluctuated mainly between 1.5 and 2.5 m of the soil surface during most of the year. In the valley floors of the undrained areas, they fluctuated between 0 and 1 m of the soil surface. The impact of an extreme rainfall event (or unusual wet season) on drain performance was predicted to vary with distance from the drain. Within 100 m from the drain, water levels declined relatively quickly, whereas it took a year before the water levels at 200–300 m away from the drain responded. The main guidelines that can be recommended based on the results from this study are the drain depth and importance of ferricrete layer. In order to be effective, a drain should be more than 2 m deep and it should cut through the ferricrete layer that exists in many landscapes in the wheatbelt.

Publisher

CSIRO Publishing

Subject

General Agricultural and Biological Sciences

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3