Author:
Fugel Malte,Kleemiss Florian,Malaspina Lorraine A.,Pal Rumpa,Spackman Peter R.,Jayatilaka Dylan,Grabowsky Simon
Abstract
The nitrate anion, NO3−, is often regarded as a textbook example for the very fundamental concept of resonance. Usually, three equivalent resonance structures with one N–O double bond and two N–O single bonds are considered. Consequently, each of the three N–O bonds should have a partial double bond character. In this study, we analyse the resonance in NO3− in comparison with the related species HNO3 and FNO3 by applying a combination of the Quantum Theory of Atoms in Molecules (QTAIM), a natural bond orbital (NBO) analysis, the electron localizability indicator (ELI), and valence bond (VB) calculations. Despite the fundamental importance of nitrate salts and nitric acid for the environment, chemistry, and industry, a bonding analysis is absent from the literature so far. The classical resonance structures are clearly reflected by the bond analysis tools, but are not the only contributions to the bonding situation. The resonance in HNO3 and FNO3 is greatly perturbed by the hydrogen and fluorine atoms. In addition to theoretical calculations, experimental electron density and wave function refinements were carried out on a KNO3 crystal.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献