Deep net simulator (DNS): a new insight into reservoir simulation

Author:

Ghassemzadeh Shahdad,Gonzalez Perdomo Maria,Haghighi Manouchehr,Abbasnejad Ehsan

Abstract

Reservoir simulation plays a vital role as a diagnostics tool to better understand and predict a reservoir’s behaviour. The primary purpose of running a reservoir simulation is to replicate reservoir performance under different production conditions; therefore, the development of a reliable and fast dynamic reservoir model is a priority for the industry. In each simulation, the reservoir is divided into millions of cells, with fluid and rock attributes assigned to each cell. Based on these attributes, flow equations are solved through numerical methods, resulting in an excessively long processing time. Given the recent progress in machine learning methods, this study aimed to further investigate the possibility of using deep learning in reservoir simulations. Throughout this paper, we used deep learning to build a data-driven simulator for both 1D oil and 2D gas reservoirs. In this approach, instead of solving fluid flow equations directly, a data-driven model instantly predicts the reservoir pressure using the same input data of a numerical simulator. Datasets were generated using a physics-based simulator. It was found that for the training and validation sets, the mean absolute percentage error (MAPE) was less than 15.1% and the correlation coefficient, R2, was more than 0.84 for the 1D oil reservoirs, while for the 2D gas reservoir MAPE < 0.84% and R2 ≈1. Furthermore, the sensitivity analysis results confirmed that the proposed approach has promising potential (MAPE < 5%, R2 > 0.9). The results agreed that the deep learning based, data-driven model is reasonably accurate and trustworthy when compared with physics-derived models.

Publisher

CSIRO Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3