Beach safety: can drones provide a platform for sighting sharks?

Author:

Butcher Paul A.ORCID,Piddocke Toby P.,Colefax Andrew P.,Hoade Brent,Peddemors Victor M.ORCID,Borg Lauren,Cullis Brian R.

Abstract

Abstract ContextA series of unprovoked shark attacks on New South Wales (Australia) beaches between 2013 and 2015 triggered an investigation of new and emerging technologies for protecting bathers. Traditionally, bather protection has included several methods for shark capture, detection and/or deterrence but has often relied on environmentally damaging techniques. Heightened environmental awareness, including the important role of sharks in the marine ecosystem, demands new techniques for protection from shark attack. Recent advances in drone-related technologies have enabled the possibility of real-time shark detection and alerting. AimTo determine the reliability of drones to detect shark analogues in the water across a range of environmental conditions experienced on New South Wales beaches. MethodsA standard multirotor drone (DJI Inspire 1) was used to detect shark analogues as a proxy during flights at 0900, 1200 and 1500 hours over a 3-week period. The 27 flights encompassed a range of environmental conditions, including wind speed (2–30.0kmh−1), turbidity (0.4–6.4m), cloud cover (0–100%), glare (0–100%), seas (0.4–1.4m), swells (1.4–2.5m) and sea state (Beaufort Scale 1–5 Bf). Key resultsDetection rates of the shark analogues over the 27 flights were significantly higher for the independent observer conducting post-flight video analysis (50%) than for the drone pilot (38%) (Wald P=0.04). Water depth and turbidity significantly impaired detection of analogues (Wald P=0.04). Specifically, at a set depth of 2m below the water surface, very few analogues were seen by the observer or pilot when water turbidity reduced visibility to less than 1.5m. Similarly, when water visibility was greater than 1.5m, the detection rate was negatively related to water depth. Conclusions The present study demonstrates that drones can fly under most environmental conditions and would be a cost-effective bather protection tool for a range of user groups. ImplicationsThe most effective use of drones would occur during light winds and in shallow clear water. Although poor water visibility may restrict detection, sharks spend large amounts of time near the surface, therefore providing a practical tool for detection in most conditions.

Publisher

CSIRO Publishing

Subject

Management, Monitoring, Policy and Law,Ecology, Evolution, Behavior and Systematics

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. References;Oceaning;2024-01-19

2. Ending;Oceaning;2024-01-19

3. Living;Oceaning;2024-01-19

4. Crashing;Oceaning;2024-01-19

5. Storying;Oceaning;2024-01-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3